題號: 415

國立臺灣大學103學年度碩士班招生考試試題

科目:工程數學(C)

節次: 6

題號:415 共 4 頁之第 1 頁

※ 注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

1. (5%) A function y(x) satisfies the following

$$(y')^2 = 9x^4y$$
, $y(0) = 0$.

Find the possible values of y(2) from below

- (A) 0
- (B) -4
- (C) 16
- (D) -64
- (E) None of the above
- 2. (5%) For the following linear differential equation

$$x^3y''' + 2x^2y'' + xy' = y, \quad x > 0.$$

Choose from the below set of independent solutions of the above equation.

- (A) $\{x, x \sin x, x \cos x\}$
- (B) $\{x, x \sin 3x\}$
- (C) $\{x, \sin \ln x\}$
- (D) $\{x, \sin \ln 3x\}$
- (E) None of the above
- 3. (5%) Consider the following differential equation of a function y(x)

$$y^{(4)} + 4y = 0$$

Choose from the below possible solutions of the above equation.

- $(A) y(x) = e^{2x}$
- (B) $y(x) = e^{-x} \cos x$
- (C) $y(x) = e^{-\sqrt{2}x} \sin x$
- (D) $y(x) = e^x \cos(x + \pi/4)$
- (E) None of the above
- 4. (5%) A function y(x) satisfies the following:

$$y'' + 4y' + 4y = 4e^{-2x}$$

Choose from the below possible solutions of the above equation.

- (A) $y(x) = (x + 2x^2)e^{-2x}$
- (B) $y(x) = e^{-2x}$
- (C) $y(x) = (1 + 2x + x^2 + x^3)e^{-2x}$
- (D) $y(x) = (1+x)(1+2x)e^{-2x}$
- (E) None of the above
- 5. (5%) A dynamical system with a time-varying state variable $\mathbf{x}(t)$ is described by the following differential equation

$$(t^2 + t - 2)x'' - 2(2t + 1)x' + 6x = 0, t \ge 0$$

Under the conditions

$$0 < x(1) < 1, x'''(1) = 0$$

Find the possible values of x(2) from below,

- (A) 1
- (B) 2
- (C) 4
- (D) 8
- (E) None of the above

題號: 415

國立臺灣大學103學年度碩士班招生考試試題

科目:工程數學(C)

題號:415 共 4 頁之第 2 頁

節次: 6 共 4 頁之

6. (5%) Which of the following function is of exponential order?

- (A) $5e^{4t}$
- (B) $\cosh 3t$
- (C) $\cosh t^4$
- (D) $\sin e^{t^2}$
- (E) None of the above

7. (5%) Evaluate the Laplace or inverse Laplace transform of the following functions. Which are correct?

(A)
$$f(t) = e^{-t} \times H(t-5)$$
, $L\{f(t)\} = (1-5e^{-t})H(t-5)$

(B)
$$f(t) = \int_0^5 H(\tau - t)d\tau$$
, $L\{f(t)\} = (5 - t)H(5 - t)$

(C)
$$f(s) = \frac{1}{s} \tanh s$$
, $L^{-1}\{f(s)\} = H(t) - 2H(t-1) + 2H(t-3) - \dots$

(D)
$$f(s) = \frac{e^{-s}}{s^2 + s + 1}$$
, $L^{-1}{f(s)} = \frac{2}{\sqrt{3}}H(t - 1)e^{1 - t/2}\sin 2\sqrt{3}(t - 1)$

- (E) None of the above
- 8. (5%) The inverse Laplace transform of function $f(s) = \ln \left(\frac{s^2 + 1}{s^2 + s} \right)$ is expressed as

$$f(t) = \frac{A(t)\cos t + B(t) + e^{C(t)}}{D(t)}$$

Which of the followings are correct?

- (A) A(t) = -2t
- (B) B(t) = 1
- (C) C(t) = -t
- (D) $D(t) = \sin t$
- (E) None of the above
- 9. (5%) Given a forcing function

$$f(t) = \begin{cases} 1, & 0 \le t < 1, 2 \le t < 3, 4 \le t < 5, \dots \\ 0, & 1 \le t < 2, 3 \le t < 4, 5 \le t < 6, \dots \end{cases}$$

Solve the differential equation x'' + x = f(t), with that x(0) = x'(0) = 1, and we have $x(t) = \sin A(t) + B(t) \cos C(t) + 2t + D(t)H(t-2) + E(t)H(t-4) + \cdots$

Which of the followings are correct?

- (A) A(t) = t
- (B) B(t) = -1
- (C) $D(t) = 4(\cos(2-t) 1)$
- (D) x(5) > 4
- (E) None of the above

題號: 415 國立臺灣大學103學年度碩士班招生考試試題

科目:工程數學(C)

題號:415

節次: 6

共 4 頁之第 3 頁

10. (5%) Evaluate the Fourier or inverse Fourier transform of the following functions. Which are correct?

(A)
$$f(\omega) = H(\omega + a) - H(\omega - a), a > 0, F^{-1}{f(\omega)} = \sin x/ax$$

(B)
$$f(x) = 4x^2 e^{-3|x|}$$
, $F\{f(x)\} = 48 \left[\frac{1}{(\omega^2 + 9)^2} - \frac{4\omega^2}{(\omega^2 + 9)^3} \right]$

(C)
$$f(\omega) = \frac{4\sin\omega}{\omega} - \frac{1}{\sqrt{|\omega|}}$$
, $F^{-1}\{f(\omega)\} = 2[H(x+1) - H(x-1)] - \frac{1}{\sqrt{2\pi x}}$

(D)
$$f(x) = \frac{\cos 3x}{x^2 + 2}$$
, $F\{f(x)\} = \frac{\sqrt{2}\pi}{4} \left(e^{-\sqrt{2}|\omega - 3|} + e^{-\sqrt{2}|\omega + 3|} \right)$

- (E) None of the above
- 11. (5%) For any vector space V,
 - (A) If V is finite-dimensional, then no infinite subset of V is linearly independent
 - (B) If V is finite-dimensional, then V is a subspace of \mathbb{R}^n for some positive integer n
 - (C) If V is a function space, then V must be infinite-dimensional
 - (D) If V is infinite-dimensional, then every infinite subset of V is linearly independent
 - (E) None of the preceding statements are true.
- 12. Which of the following is true for every orthogonal $n \times n$ matrix Q? (5%)
 - (A) Q has eigenvalue 1
 - (B) $\det Q = 1$
 - (C) Q^T is an orthogonal matrix
 - (D) Q is diagonalizable
 - (E) None of the preceding statements are true
- 13. (5%) Determine which statement is true for all $n \times n$ matrices A
 - (A) If A has no eigenvalues, then the degree of its characteristic polynomial is zero
 - (B) If one of the eigenvalues of A has multiplicity greater than one, then A has fewer then n eigenvalues
 - (C) If one of the eigenvalues of A has multiplicity greater than one, then A has fewer than n eigenvectors
 - (D) A has n distinct eigenvalues
 - (E) None of the preceding statements are true
- 14. (5%) Let A be an $n \times n$ matrix. Then which of the following set is not a subspace?
 - (A) Col A
 - (B) Row A
 - (C) Null A
 - (D) rank A
 - (E) None of the above
- 15. (5%) Suppose that A is an invertible matrix. Then:
 - (A) det $A^{-1} = \det A^T$
 - (B) $\det A^{-1} = 1/\det A$
 - (C) $\det A = 0$
 - (D) det $A^{-1} = \det A$
 - (E) None of the preceding statements is true

題號: 415

國立臺灣大學103學年度碩士班招生考試試題

科目:工程數學(C)

題號:415

節次: 6

共 4 頁之第 4 頁

16. (5%) Let
$$A = \begin{bmatrix} -2 & -2 & -1 \\ 1 & 1 & -1 \\ 4 & 4 & 5 \end{bmatrix}$$
. Which of the following is an eigenvalue of A ?

- (A) 0; (B) 1; (C) 2; (D) 3.
- (E) None of the above.
- 17. (5%) Which of the following is a linear transformation?
 - (A) $T: \mathcal{R} \to \mathcal{R}$ where T(x) = 4x 1 for any $x \in \mathcal{R}$.

(B)
$$T: \mathcal{R}^2 \to \mathcal{R}^2$$
 where $T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 2x_1 + 3x_2 \\ 3x_1 - 4x_2 \end{array}\right]$ for any vector $\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \in \mathcal{R}^2$.

- (C) $T: \mathcal{P} \to \mathcal{P}$ where T(f(x)) = f(x)(x+1) for any polynomial $f(x) \in \mathcal{P}$.
- (D) $T: \mathcal{C}^{\infty}(\mathcal{R}) \to \mathcal{C}^{\infty}(\mathcal{R})$ where T(f(x)) = 3f''(x) + f'(x) + f(x) for any differentiable function $f(x) \in \mathcal{C}^{\infty}(\mathcal{R})$.
- (E) None of the above.
- 18. (5%) Which of the following sets is an orthonormal basis for the designated vector space?

(A)
$$\left\{\frac{1}{5}\begin{bmatrix}3\\4\end{bmatrix},\frac{1}{5}\begin{bmatrix}4\\-3\end{bmatrix}\right\}$$
, for \mathcal{R}^2 with $\langle \mathbf{x},\mathbf{y}\rangle = \mathbf{x}^T\mathbf{y}$.

- (B) $\left\{\frac{1}{\sqrt{\pi}}\cos x, -\frac{1}{\sqrt{\pi}}\sin x\right\}$, for $\mathcal{C}[0, 2\pi]$ with $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$.
- (C) $\{1, x, x^3\}$ for \mathcal{P}_3 with $(f, g) = \int_{-1}^1 f(x)g(x)dx$.

(D)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 for \mathcal{R}^3 with $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T M \mathbf{y}$ where $M = \begin{bmatrix} 1 & 2 & 0\\ 2 & 1 & 2\\ 0 & 2 & 1 \end{bmatrix}$.

- (E) None of the above.
- 19. (5%) Which of the following is true?
 - (A) For any $m \times n$ matrix A, AA^T is always invertible.
 - (B) For any $m \times n$ matrix A, rank A = n if and only if Ax = 0 has only one solution.
 - (C) For any $m \times n$ matrix $A, 0 \le \operatorname{rank}(A) \le \max(n, m)$.
 - (D) For an $m \times n$ matrix A, rank A = m if and only if Ax = b has at least a solution for all $b \in \mathbb{R}^m$.
 - (E) None of the above.

20. (5%) Perform Gram-Schmidt Process on the subset of
$$\mathcal{R}^4$$
, $\mathcal{S} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 4 \\ -2 \end{bmatrix} \right\}$, and the subset of \mathcal{R}^4 , $\mathcal{S} = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 4 \\ -2 \end{bmatrix} \right\}$

obtain an orthonormal set W which satisfies Span S = Span W. Which of the following will NOT be an element of W?

$$(A) \ \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}; \ (B) \ \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}; \ (C) \ \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}; \ (D) \ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix};$$

(E) None of the above.