題號: 53 科目:代數 節次: 2

題號: 53 共 / 頁之第 / 頁

(1) (10 points) Show that the conjugacy classes of S_n are in one to one correspondence with the partitions of n. (S_n is the permutation group of n elements. Note that every element in S_n has a unique cycle decomposition.)

- (2) (15 points) Let $\phi: G \to H$ be a group homomorphism and let N be a normal subgroup of G. Prove or disprove that the image $\phi(N)$ is a normal subgroup of H. (Disproving the statement requires giving an explicit counterexample.)
- (3) (15 points) Prove that if |G| = 462 then G is not simple. (You need to apply Sylow Theorem.)
- (4) (15 points) Let R be a commutative ring. An element $x \in R$ is called nilpotent if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove that the set of nilpotent elements, denoted by $\mathcal{N}(R)$, forms an ideal. ($\mathcal{N}(R)$ is called nilradical of R.)
- (5) (15 points) Prove that the ideal (2, x) generated by 2 and x in $\mathbb{Z}[x]$ is not principal. ($\mathbb{Z}[x]$ is the ring of polynomials with integral coefficients.)
- (6) (15 points) Let p be a prime. Please construct the splitting field \mathbb{E} of $x^p 2$ over \mathbb{Q} and compute the degree $[\mathbb{E} : \mathbb{Q}]$.
- (7) (15 points) Consider the polynomial $f(x) = x^5 6x + 3 \in \mathbb{Q}[x]$. First note that f(x) is irreducible due to Eisenstein criterion. Show that the Galois group of f(x) is S_5 . (You may apply the Fundamental Theorem of Algebra and Galois theory.)