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(1) (10 points) Show that the conjugacy classes of S, are in one to one
correspondence with the partitions of n. (S, is the permutation group
of n elements. Note that every element in S, has a unigue cycle de-
composition.)

(2) (15 points) Let ¢ : G — H be a group homomorphism and let NV be
2 mormal subgroup of G. Prove or disprove that the image ¢(N) is a
normal subgroup of H. (Disproving the statement requires giving an
explicit counterexample.)

(3) (15 points) Prove that if |G| = 462 then G is not simple. (You need
to apply Sylow Theorem.)

(4) (15 points) Let R be a commutative ring. An element z € R is called
nilpotent if ™ = 0 for some n € Z*. Prove that the set of nilpotent
elements, denoted by V(R), forms an ideal. (AV(R) is called nilradical
of R.)

(5) (15 points) Prove that the ideal (2, z) geneféfed by 2 and z in Z[z]
is not principal. {Z[z] is the ring of polynomials with integral coeffi-
cients. )

(6) (15 points) Let p be a prime. Please construct the splitting field E of
z? — 2 over Q and compute the degree [E : Q). .

(7) (15 points) Consider the polynomial f(z) = 2z° — 6213 € Qlz]. First
note that f(z) is irreducible due to Eisenstein criterion. Show that the
Galois group of f(x) is Ss. (You may apply the Fundamental Theorem
of Algebra and Galois theory.)
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