題號: 345

國立臺灣大學101學年度碩士班招生考試試題

科目:電子學(B)

節次: 4

題號: 345 共 / 頁之第 / 頁

1. (20%)

- (a) Design a voltage regulator using a zener diode. The voltage regulator is to power a car radio at $V_L = 9$ V from an automobile battery whose voltage varies between 11 and 13.6 V. The current in the radio varies from 0 (off) to 100 mA (full volume).
- (b) Find the line regulation and load regulation of your designed circuit.

2. (20%)

- (a) Design a voltage follower using BJT transistors.
- (b) Find the input resistance and the output resistance of your voltage follower.
- (c) If your voltage source has a 500 Ω resistance, determine the collector current I_C such that the overall voltage gain will not be affected too much when the source resistance is doubled.
- (d) Describe at least two ways by which you can bias the circuit.

3. (20%)

A measured open-loop gain of an internally compensated op amp is x dB and y dB at very low frequency and 100 kHz, respectively.

- (a) Estimate A_0 (the dc gain), f_b (3-dB frequency), and f_t (unity-gain bandwidth).
- (b) If your boss requests you to change the 3-dB frequency to 10 kHz, how would you do it?

4. (20%)

- (a) Describe a three-input CMOS XOR logic circuit.
- (b) List the advantages of using CMOS circuit compared with PMOS logic circuits.

5. (20%)

Design an amplifier using op amps and resistors. The output y of the designed amplifier is 100 times of the weighted average (magnitude) of two pairs of differential inputs: $(x_1 - x_2)$ and $(x_3 - x_4)$, i.e., $y = 100 \times \frac{2 \times (x_1 - x_2) + 3 \times (x_3 - x_4)}{5}$. The maximum possible resistance is 1 M Ω and each input signal must

see the maximum possible input resistance.

試題隨卷繳回