科目:自動控制

題號: 340 共 2 頁之第 / 頁

1~2 為簡答題,無須詳列計算後將答案清楚寫在答案紙上題號之後,如

- 1. (1) \underline{XXX} ; (2) \underline{XXX} ; (3) \underline{XXX}
- 2. (1) (a) XXX; (b) XXX
 - (2) (a) XXX; (b) XXX 以此類推
- 1. List three of the advantages of closed-loop control over open-loop control (9%)
- 2. The Nyquist diagrams for two stable, open-loop systems are sketched as Figure A:

Figure A Nyquist plots for problem 2

Figure B Control system for problem 2

The proposed operating gain is indicated as K_o, and arrows indicate increasing frequency. In each case give your best estimates of the following quantities for the closed loop system (as shown in Figure B):

- (1) phase margin (4%)
- (2) damping ratio (4%)
- (3) range of gain for stability (if any) (4%)
- (4) system type (0, I or II) (4%)
- 3. If a DC motor is modeled as:

$$Y(s) = \frac{A}{(\tau_1 s + 1)(\tau_2 s + 1)} V_a(s)$$

PID controller ($k_p + k_i/s + k_ds$) so that the poles of the closed-loop system are as shown in Figure C. Express k_p , k_i , k_d in three parameters related to the pole placement, σ (real part), ζ (damping ratio) and ω_n (undamped natural frequency). (15%)

Figure C Pole placement for problem 3

題號:340

科目:自動控制

題號: 340

共 2 頁之第 2 頁

4. Consider the nonlinear autonomous system

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2(x_3 - x_1) \\ x_1^2 - 1 \\ -x_1 x_3 \end{bmatrix}$$

- (a) Find the equilibrium points (4%)
- (b) Find the linearized system about each equilibrium point (16%)
- (c) For each case in part (b), what is the stability of the nonlinear system near the equilibrium point? (10%)
- 5. The frequency response data (Table A) and plot (Figure D) were taken from a DC motor that is to be used in a position control system. Assume that the motor is linear and minimum-phase.

Table A Frequency response data for problem 5

Tuble 111 requency response data for problem 5					
ω (rad/s)	G(s) (dB)	ω (rad/s)	G(s) (dB)	ω (rad/s)	G(s) (dB)
0.1	60.0	3.0	30.5	60.0	-20.0
0.2	54.0	4.0	27.0	65.0	-21.0
0.3	50.0	5.0	23.0	80.0	-24.0
0.5	46.0	7.0	19.5	100.0	-30.0
0.8	42.0	10.0	14.0	200.0	-48.0
1.0	40.0	20.0	2.0	300.0	-59.0
2.0	34.0	40.0	-10.0	500.0	-72.0

Figure D Frequency response plot for problem 5

- (a) Estimate the transfer function G(s) (15%)
- (b) Design a series compensator so that the closed-loop system meets the following specifications (15%)
 - the steady state error to a unit ramp is less than 0.01
 - phase margin $PM > 40^{\circ}$

試題隨卷繳回