題號:232 國立臺灣大學99學年度碩士班招生考試試題

科目:材料力學(D)

題號: 232

共 一 頁之第 / 頁

(20%) 1. The axially loaded bar ABCD is held between rigid supports. The bar has cross-sectional area  $A_1$  from A to C and  $2A_1$  from C to D.

- (a) Derive formulas for the reactions  $R_A$  and  $R_D$  at the ends of the bar. (10%)
- (b) Determine the displacements  $\delta_B$  and  $\delta_C$  at points B and C, respectively. (10%)



(15%) 2. The composite shaft is manufactured by shrink-fitting a steel sleeve over a brass core so that the two parts act as a single bar in torsion. The outer diameters of the two parts are  $d_1 = 40$  mm for the brass core and  $d_2 = 50$  mm for the steel sleeve. The shear moduli of elasticity are  $G_b = 36$  GPa for the brass and  $G_s = 80$  GPa for the steel. Assuming that the allowable shear stresses in the brass and steel are  $\tau_b = 48$  MPa and  $\tau_s = 80$  MPa, respectively, determine the maximum permissible torque  $T_{\text{max}}$  that may be applied to the shaft.



(15%) 3. Beam ABCD is simply supported at B and C and has overhangs at each end. The span length is L and each overhang has length L/3. A uniform load of intensity q acts along the entire length of the beam. Draw the shear-force and bending-moment diagrams for this beam.



國立臺灣大學99學年度碩士班招生考試試題

科目:材料力學(D)

題號: 232

題號: 232

共 一 頁之第 一 頁

(15%) 4. A beam of T-section is supported and loaded as shown in the figure. The cross section has width b=65 mm, height h=75 mm, and thickness t=13 mm. Determine the maximum tensile and compressive stresses in the beam.



(20%) 5. At a point on the surface of a machine component the stresses acting on the x face of a stress element are  $\sigma_x = 42$  MPa and  $\tau_{xy} = 33$  MPa. What is the allowable range of values for the stress  $\sigma_y$  if the maximum shear stress is limited to  $\tau_0 = 35$  MPa?



(15%) 6. Derive the equation of the deflection curve for a cantilever beam AB supporting a load P at the free end. Also, determine the deflection  $\delta_B$  and angle of rotation  $\theta_B$  at the free end.



試題隨卷繳回