國立臺灣大學99學年度碩士班招生考試試題

科目:機率統計

題號:55

超號: 55

1. (15%) Let X_1, \dots, X_n be a random sample from a population with finite moments $\mu_j = E[X_1^j]$, j = 1, 2, 3, 4, and S_n^2 be the usual unbiased sample variance. Compute the mean squared error of S_n^2 .

- 2. (10%) Let X and Y be mutually independent continuous random variables with the distributions $F_X(x)$ and $F_Y(y)$, respectively. Derive the distribution of X conditioning on $\{Z=0\}$, where $Z=I(X\leq Y)$.
- 3. (10%) Let X be a random variable with the cumulative distribution function F(x). Show that $P(F(X) > u) \ge (1 u)$ for $u \in (0, 1)$.
- 4. (10%) Specify the joint distribution of R and Θ so that $X = R\cos\Theta$ and $Y = R\sin\Theta$ are independent standard normal random variables.
- 5. (15%) Let X_1, \dots, X_n, X_{n+1} be a random sample from a uniform distribution U(0, 1), and $X_{(k)}$ and $X_{(m)}$ be the kth and the mth order statistics of $\{X_n, \dots, X_n\}$, 1 < k < m < n. Compute the probability $P(X_{(k)} < X_{n+1} < X_{(m)})$.
- 6. (15%) Let X_1, \dots, X_{n+1} be a random sample from $Bernoulli(\pi)$ and $h(\pi) = P(\sum_{i=1}^n X_i > X_{n+1}|\pi)$. Find the uniformly minimum variance unbiased estimator of $h(\pi)$.
- 7. (15%) Let X_1, \dots, X_n be a random sample from a Poisson distribution with rate λ . Derive the uniformly most powerful level α test, $0 < \alpha < 1$, for the hypotheses $H_0: \lambda = \lambda_0$ versus $H_A: \lambda > \lambda_0$.
- 8 (10%). Let X_1, \dots, X_n be a random sample from a normal distribution with mean θ and a known variance σ^2 , and θ have a prior normal distribution with known mean μ and variance τ^2 . Find the Bayes estimator of θ based on the loss function $L(\theta, \delta(X_1, \dots, X_n)) = |\delta(X_1, \dots, X_n) \theta|$