國立臺灣大學98學年度碩士班招生考試試題

科目:材料力學(E)

題號:254

題號:254

共 2 頁之第 1 頁

1. (25%) Consider a point in a structural member that is subjected to plane stress. The stress state of this point is described by $\sigma_{xx} = 2a_1b_1$, $\sigma_{yy} = 2a_2b_2$, $\sigma_{xy} = a_1b_2 + a_2b_1$.

(a). (10%) Let σ_{nn} (σ_{nl}) be the normal stress acting on the plane oriented at an angle θ ($\theta + \pi/2$) with respect to the reference axis x. Suppose that $\sigma_{xx} + \sigma_{yy} = 0$. Show that there exists an angle θ such that $\sigma_{xx} = 0$, $\sigma_{nl} = 0$.

Next, suppose further $\sigma_{xx} + \sigma_{yy} = 0$, $a_1^2 + a_2^2 = b_1^2 + b_2^2 = k^2$, and k > 0, $\frac{a_1}{a_2} = \sqrt{3}$.

Assume $a_1 > 0$, $a_2 > 0$, $b_1 < 0$, $b_2 > 0$.

- (b). (10%) Find out the principal stresses and principal angle θ_n .
- (c). (5%) Find the maximum in-plane shearing stress and θ_{ϵ} .
- 2. (10%) Fig. 1 shows a loaded structure whose members can sustain only axial forces. The load P acts on the point B. The cross-sectional areas are A for both members AB and BC. The length of the member AB is I. Further both members have a modulus of elasticity E. Assume $\sin \theta = \frac{3}{5}$ and $\frac{Pl}{EA} = \delta^*$. Determine the horizontal u_1 and vertical u_2 components of the displacement of point B in terms of δ^* .
- 3. (15%) The assembly shown in Fig. 2 consists of a steel rod A (Young's modulus= E_A , area= A_A , length= L_A , coefficient of thermal expansion= α_A), a rigid bearing plate that is securely fastened to bar A, and a bronze bar B (Young's modulus= E_B , area= A_B , length= L_B , coefficient of thermal expansion= α_B). A clearance of δ_C exists between the bearing plate and bar B before the assembly is loaded. Suppose the load P is applied to the bearing plate and the temperature of the assembly is slowly raised. Assume $\frac{PL_A}{E_AA_A} = \frac{1}{2}\delta_C$. Find the temperature increase ΔT such that the stress in the steel rod A begins decreasing. Note that ΔT has to be expressed in terms of δ_C , L_A , L_B , α_A and α_B .
- 4. (25%) A prismatic tube AB of circular cross section (diameter d, thickness t, and length L) is fixed at the bottom end A and free at the top end B (see Figure 3). The bar is loaded by a distributed torque of constant intensity T per unit length.
 - (a). (10%) What is the maximum shear stress in the bar?
 - (b). (15%) What is the angle of twist at the top end B?
- 5. (25%) The beam shown in Figure 4 has length of 3L and constant flexural rigidity EI. It is loaded uniformly by w (N/m).
 - (a). (10%) Determine the reactions at both ends.
 - (b). (10%) Determine the deflection at the middle point of the beam.
 - (c). (5%) Determine the slope at the middle point of the beam.

題號:254

國立臺灣大學98學年度碩士班招生考試試題

科目:材料力學(E)

題號:254

共 2 頁之第 2 頁

Fig. 1

Fig. 2

Fig. 3

Fig. 4

試題隨卷繳回