題號: 92

國立臺灣大學 113 學年度碩士班招生考試試題

科目:總體經濟學

題號: 9

節次: 2

共 2. 頁之第 1 頁

Macroeconomics exam: there are three short answer questions. Please write down your equations, solution process, and answers in the answering sheets. 请將解題過程及答案寫在答案紙上。

Question 1 (20 points)

Consider the representative agent model where each family is composed of an equal number of low-productivity members with permanent hourly productivity $w_L = e^{-a}$ and high-productivity members with productivity $w_H = e^a$ where a > 0 is a parameter. Suppose the labor income wh is subject to a progressive income taxation where the after-tax income is $\theta_0(wh)^{1-\theta_1}$. The parameter θ_0 captures the level of taxes and the parameter θ_1 captures the progressivity. In the economy, the family planner maximizes

$$\max_{c_t, h_{L,t}, h_{H,t}} \sum_{t=0}^T \beta^t \left[\left(\log(c_t) - \chi \frac{h_{L,t}^{1+\eta}}{1+\eta} \right) + \left(\log(c_t) - \chi \frac{h_{H,t}^{1+\eta}}{1+\eta} \right) \right]$$

subject to the family budget constraint

$$c_t + k_{t+1} = \theta_0 \left(e^{-a} h_{L,t} \right)^{1-\theta_1} + \theta_0 \left(e^{a} h_{H,t} \right)^{1-\theta_1} + k_t (1+r) + T$$

- a) (5 points) Derive the first order conditions with respect to c_t
- b) (5 points) Derive the first order conditions with respect to $h_{H,t}$ and $h_{L,t}$
- c) (5 points) Derive $\frac{h_{H,t}}{h_L}$
- d) (5 points) How the ratio of hours work $\frac{h_{H,t}}{h_{L,t}}$ change with progressivity θ_1 ?

Question 2 (30 points)

Consider the dynamic optimization problem:

$$\max_{\{c_t, k_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t \ln(c_t)$$

subject to

$$c_t + k_{t+1} = R_t k_t \ \forall t = 0, ..., T$$
$$k_0 > 0 \text{ given}$$

- (a) (5 points) Derive the Euler equation
- (b) (5 points) Assume that we have $\{R_t\}_{t=0}^T$ with R_t different at each t. Show that the **consolidated** budget constraint is

$$c_0 + \frac{1}{R_1}c_1 + \frac{1}{R_1R_2}c_2 + \frac{1}{R_1R_2R_3}c_3 + \dots + \frac{1}{R_1\dots R_T}c_T = k_0R_0$$

- (c) (5 points) Solve for c_0, c_1
- (d) (5 points) Derive the general solution form of c_t
- (e) (5 points) Suppose R_t increases, What happen to the consumption stream $\{c_0, c_1, ..., c_{t-1}\}$? (increase, decrease or unchange)
 - (f) (5 points) Find the intertemporal elasticity of substitution (i.e $\frac{d \ln(c_{t+1}/c_t)}{d \ln R_{t+1}}$)

題號: 92

國立臺灣大學 113 學年度碩士班招生考試試題

科目:總體經濟學

47月 · 心脏还有了

題號: 92

共 之 頁之第 之 頁

Question 3 (50 points)

Heterogeneity in an endowment economy

Consider an endowment economy with two periods, t and t+1. Suppose there are two types of households. Among the population, 60% are type 1 agents and 40% are type 2 agents. Normalize total population to 1. Households differ in their endowments, but they have the same preference.

Endowments:

Type 1 agents: $Y_t^1 = 7, Y_{t+1}^1 = 4$

Type 2 agents: $Y_t^2 = 3, Y_{t+1}^2 = 10$.

Each agent has the same utility function:

 $\max_{c_t, c_{t+1}} \ln c_t + \beta \ln c_{t+1},$

subject to

$$c_t^i + \frac{c_{t+1}^i}{1+r} = Y_t^i + \frac{Y_{t+1}^i}{1+r_t},$$

where $\beta = 1$ and i = 1 or 2, indicating each type of agents. In the following questions, round off your answer to two decimal places.

- (a) (6 points) What are aggregate endowments Y_t and Y_{t+1} ?
- (b) (10 points) Derive the optimal consumption function at time t for each type of agents.
- (c) (4 points) Using the optimal consumption in (b), what is the aggregate consumption at time t?
- (d) (6 points) What is the market clearing condition in this endowment economy?
- (e) (8 points) What is the value of the equilibrium interest rate r_t ?
- (f) (8 points) In the general equilibrium, derive the equation of the IS curve, which is the relationship (an equation) between the equilibrium interest rate r_t and the aggregate endowments Y_t and Y_{t+1} (write down r_t as a function of Y_t and Y_{t+1}).
- (g) (8 points) Now, suppose every agent has the identical endowment that is equal to the aggregate endowment in (a) at time t and t+1, what is the value of the equilibrium interest rate r_t ?