國立臺灣大學 113 學年度碩士班招生考試試題

和目:數學(B) 節次: 7

題號: 80 共 乙 頁之第 \ 頁

1. Let z = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$. Express $\frac{\partial z}{\partial x}$ in terms of r, θ . (10 points)

2. Let
$$A = LU$$
 where $L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ 4 & 7 & 3 & 2 \end{bmatrix}$ and $U = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 0 & 2 & 7 & 4 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Denote the eigenval-

ues of A as $\lambda_1, \lambda_2, \lambda_3$ and λ_4 . Determine the values of $\prod_{k=1}^4 \lambda_k$ and $\sum_{k=1}^4 \lambda_k$.

(10 points)

3. Evaluate the following:

(i)
$$\lim_{x\to 0} \frac{1}{x^3} \int_0^x \sin(t^2) dt$$
, (5 points)

(ii)
$$\lim_{x\to\infty} \left(\frac{x}{x+1}\right)^x$$
, (5 points)

(iii)
$$\lim_{x\to 0} \frac{1}{x} \int_0^x (1-\tan t)^{1/t} dt$$
, (5 points)

(iv)
$$\int_0^\infty x^n e^{-x} dx$$
 where n is a positive integer. (5 points)

4. Let V be the subspace of \mathbb{R}^4 generated by $\boldsymbol{v_1} = [1,0,1,0]^\top$, $\boldsymbol{v_2} = [1,1,1,0]^\top$, $\boldsymbol{v_3} = [1,-1,0,1]^\top$.

(ii) Find the projection of
$$[2, 0, -1, 1]^{\mathsf{T}}$$
 on V . (5 points)

5. Find the local maximum/minimum values and saddle point(s) of the function

$$f(x,y) = x^2y - xy^2 + xy - y^2$$
. (15 points)

6. Let P_3 be the space of cubic functions (polynomials of order at most 3) with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \mathrm{d}x,$$

and let W be the subspace spanned by $\{x^2, x^3\}$.

(i) Give a general form of an element in P_3 . (2 points)

(ii) Determine the dimension of W^{\perp} , the orthogonal complement of W. (3 points)

(iii) Find a basis for W^{\perp} . (10 points)

見背面

題號: 80

國立臺灣大學 113 學年度碩士班招生考試試題

科目:數學(B) 節次: 7

題號: 80

共~頁之第~頁

7. Consider the quadratic form $f(x,y) = 3x^2 - 4xy + 3y^2$.

- (i) Find a symmetric matrix A such that $f(x,y) = [x,y]A \begin{bmatrix} x \\ y \end{bmatrix}$. (5 points)
- (ii) Find a matrix Q such that the transformation $\begin{bmatrix} x \\ y \end{bmatrix} = Q \begin{bmatrix} s \\ t \end{bmatrix}$ satisfies

$$f(x,y) = f\left(Q\begin{bmatrix} s\\t\end{bmatrix}\right) = s^2 + 5t^2.$$
 (10 points)

試題隨卷繳回