題號: 79 國立臺灣大學 113 學年度碩士班招生考試試題

科目: 數理統計

節次: 6

題號: 79

共 己 頁之第 | 頁

1. Let U be any random variable and V be any other nonnegative random variable. Denote the cdf of U+V and U by F_{U+V} and F_U respectively. Show that

$$F_{U+V}(t) \leq F_U(t)$$
 for every t .

(8 points)

- 2. Let X_1, \ldots, X_n be a random sample from the pdf $f(x \mid \theta, \nu) = \frac{\theta \nu^{\theta}}{x^{\theta+1}}$, where $\theta > 0$ and $x \ge \nu > 0$. Find the MLE for both θ and ν . (10 points)
- 3. Suppose an experimenter collects n i.i.d. samples (A_i, B_i) , i = 1, ..., n, where A_i 's and B_i 's are binary random variables. Given the marginal counts of A_i 's and B_i 's, we have the following 2×2 contingency table

	A = 0	A = 1	Row Total
B = 0	X	n_1 . $-X$	n_1 .
B=1	$n_{\cdot 1} - X$	$n-n_{\cdot 1}-n_{1\cdot}+X$	n_2 .
Col. Total	$n_{\cdot 1}$	$n_{\cdot 2}$	n

- (i) Assume that A and B are independent. Find the conditional distribution of X given n_1 , n_1 , and n. (6 points)
- (ii) Suppose we observe $n=5, n_{\cdot 1}=3, n_{1\cdot 1}=2,$ and X=0 and wish to test the hypotheses:

 $H_0:A$ and B are independent

 $H_1:A$ and B are NOT independent.

Can we reject H_0 under $\alpha = 0.05$?

(6 points)

- 4. Let $X_1, \ldots, X_n \stackrel{\text{lid}}{\sim} N(\mu, 1)$. Consider the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and sample interquartile range $IQR = (Q_3 Q_1)/2$ where Q_3 and Q_1 are the third and the first quartiles. Show that \bar{X} and IQR are independent. (10 points)
- 5. Let X be uniformly distributed on $[0, \theta]$, where $\theta \in (0, \infty)$ is an unknown parameter. Given an i.i.d. sample X_1, \ldots, X_n , construct two unbiased estimator based on (i) $\sum X_i$ and (ii) $\max_i X_i$. Which one is a better estimator? Justify your answer. (15 points)
- 6. Let X be a discrete random variable with probability mass function

$$f(x; \alpha, \beta) = \int_0^1 \binom{n}{x} \frac{1}{B(\alpha, \beta)} p^{\alpha + x - 1} (1 - p)^{\beta + n - x - 1} dp, \quad x = 0, 1, \dots, n$$

where $\alpha, \beta > 0$, n is a known positive integer, and $B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ is the Beta function. Find the expectation and variance of X. (15 points)

題號: 79

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 數理統計

共乙頁之第乙頁

節次: 6

- 7. (i) State the condition under which a binomial distribution can be well approximated by a Poisson distribution. Justify your answer. (8 points)
 - (ii) Find that the asymptotic distribution of $Z_{\lambda} = \frac{X-\lambda}{\sqrt{\lambda}}$ as $\lambda \to \infty$, where $X \sim \text{Poisson}(\lambda)$.
- 8. Suppose Y_1, \ldots, Y_n are independent with $Y_i \sim N(\beta_1 + \beta_2 z_i, \sigma^2)$, where z_1, \ldots, z_n are (fixed not random) covariates not all equal.
 - (i) Show that this is an exponential family and specify the natural sufficient statistics for $(\beta_1, \beta_2, \sigma^2)$. (10 points)
 - (ii) Calculate the expectation of the sufficient statistics in (i). (5 points)

試題隨卷繳回