題號: 78

國立臺灣大學 113 學年度碩士班招生考試試題

科目:微積分(D)

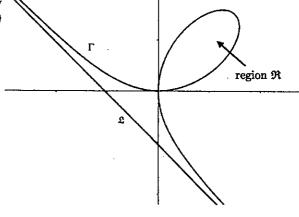
類號: 78 共 頁之第

Any device with a computer algebra system is prohibited during the exam.

- There are FIVE questions in total. Label the question numbers clearly on your work.
- · Answer all questions. You will have to show all of your calculations or reasoning to obtain credits.

1. (20%)

- (a) Find the first derivative of $f(\theta) = \frac{1}{1 + \tan^3 \theta}$.
- (b) Let a > 0 be a real number. Consider the curve $\Gamma : x^3 + y^3 = 3axy$
 - (i) The equation of Γ defines implicitly y = y(x) for x sufficiently large. Find the equation of the slant asymptote $\mathfrak L$ of y=y(x)(when $x \to \infty$).
 - (ii) Find the area enclosed by the loop of Γ (the region \Re).



2. (20%) Let a be a real number such that |a| < 1.

- (a) (i) Let n be a positive integer. Compute $\int_0^\infty x^n e^{-x} dx$.
 - (ii) Write down the Maclaurin series (Taylor series at x = 0) of $1 e^{-ax}$.
- (b) In this part, you may assume, without proof, that the given improper integrals are convergent.

 - (i) Use (a) to find the exact value of $\int_0^\infty \frac{(1-e^{-ax})e^{-x}}{x} \, \mathrm{d}x \ln(1+a).$ (ii) Hence, evaluate the integral $\int_0^1 \frac{x^p x^q}{\ln x} \, \mathrm{d}x \text{ where } |p| < 1 \text{ and } |q| < 1.$
- 3. (20%) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \begin{cases} (x^2y)^{1/3} \cdot \sin\left(\frac{y}{x}\right) & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$
 - (a) For $a \neq 0$, find the partial derivatives $\frac{\partial f}{\partial x}(a,0)$ and $\frac{\partial f}{\partial y}(a,0)$.
 - (b) Find the directional derivative of f at (0,0) in the direction $\vec{u} = \left(\frac{3}{5}, -\frac{4}{5}\right)$.
 - (c) Determine all the points of \mathbb{R}^2 at which f is differentiable. Justify your answer.
- 4. (20%) A space curve C is formed by intersecting the ellipsoid $\mathfrak{E}: x^2 + 4y^2 + z^2 = 4$ and the cylinder $\mathfrak{L}: (x-1)^2 + z^2 = 1$.
 - (a) Find the absolute maximum and absolute minimum values (if exists) of $f(x,y,z) = x^2 + y^2$ on the curve C by the method of Lagrange's multipliers.
 - (b) Is it possible to find a point on C at which the osculating plane is parallel to the xz-plane? Explain.
- 5. (20%) Evaluate the following double integrals.
 - (a) $\int_{\pi/4}^{3\pi/4} \int_0^{\frac{\theta}{2\sin\theta \cos\theta}} r^2 \cos\theta \, dr \, d\theta.$
 - (b) $\int_1^2 \int_{\frac{1}{x}}^y \sqrt{\frac{y}{x}} \cdot e^{\sqrt{xy}} \, \mathrm{d}x \, \mathrm{d}y.$