題號: 352

國立臺灣大學 112 學年度碩士班招生考試試題

科目:通信原理

節次: 3

題號: 352 | 頁之第 | 頁

(1) Suppose that y[n] - 0.5y[n-1] = x[n].

- (a) (5%) Please determine the causal sequence h[n] such that y[n] = x[n] * h[n] where * means the convolution.
- (b) (5%) Also suppose that 3f[n] f[n-1] = y[n] y[n-1]. Determine the causal sequence g[n] such that f[n] = x[n] * g[n].
- (2) Determine the following convolution results (* means the convolution).
 - (a) (6%) [3, 3, 2, 2, 1, 1] * [-1, 2, -1];
 - (b) (6%) sinc(t) * sinc(3t) * sinc(5t) * $\delta(t-6)$;
 - (c) (6%) $\operatorname{sinc}^2(3t/2) * (1+\sin(2\pi t) + \cos(4\pi t))$.
- (3) (12%) Determine x[n] and y[n] if their Z transform are as follows. Only consider the case where x[n] and y[n] are causal.

(a)
$$X(z) = \cos(z^3)$$
;

(b)
$$Y(z) = \frac{z^{-3}}{12 - z^{-1} - z^{-2}}$$
.

(4) (10%) Suppose that $X(j\omega)$ is the continuous-time Fourier transform of x(t) and $X(j\omega) \neq 0$ for $|\omega| < 6000\pi$, $X(j\omega) = 0$ for $|\omega| > 6000\pi$. Determine what is the lower bound of the sampling interval if we want to sample y(t) and z(t) as follows without the aliasing effect. In (a) and (b), * means the convolution and ' means the derivative.

(a)
$$y(t) = x'(t) * \cos(4000\pi t)$$

(b)
$$z(t) = x(t-1)x(2t+2) * x(4t)$$

In (5), (6), and (7), please simplify your answers as much as possible and write down the detailed steps

- (5) Let $X(t) = r \sin(\alpha t + \Theta)$, where r and α are non-zero constants and Θ is uniformly distributed between 0 and 2π (a) (4%) please find function $R(t,s) = \mathbb{E}[X(t)X(s)]$. (b) (5%) Assume that R(0,3)=2, please find R(0.5,3.5)
- (6) Consider a binary communication system where a random bit b is transmitted. Suppose the 2×1 transmitted signal is

$$\mathbf{s} = \left[\begin{array}{c} (-1)^b \cdot d_{min}/2 \\ 0 \end{array} \right],$$

where b = 0, 1 and $d_{min} > 0$. The received signal is r = s + n, where noise

$$\mathbf{n} = [n_1 \ n_2]^{\mathrm{T}}$$

is a white Gaussian random vector that is independent of s and T is the vector transpose.

- (a) (4%) Assume that n_i has mean μ_i and variance σ^2 , i=1,2. Please find the mean of noise vector n.
- (b) (2%) What is the definition of the covariance matrix of a random vector?
- (c) (4%) Please find the covariance matrix of n using your answer in (b)
- (d) (10%) Suppose that received

$$\mathbf{r} = [r_1 \; r_2]^{\mathrm{T}}$$

Show that given r_1 , r_2 is irrelevant; that is, r_2 is independent of s

- (7) Let Q(x) be the probability that a zero-mean unit-variance Gaussian random variable is no less than x.
 - (a) (5%) The complementary error function is defined by

$$\operatorname{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_0^x \exp(-z^2) dz$$

Please express Q(x) using $\operatorname{erfc}(x)$. In other words, show how to transform function $\operatorname{erfc}(x)$ to Q(x)?

- (b) (4%) Please prove your answer in (a)
- (c) (12%) For $1 > p_0 > 0$, find the value of r which minimizes

$$p_0Q(1-r)+(1-p_0)Q(1+r).$$

Please express your answer in p_0 .

試題隨卷繳回