407 BoERAS 100 B4 EH LR L RRH
FHamawiEQ) ’ =R 407
1 % 6 Rz¥ | R

- Please select all the correct answer(s) to question 1 to 10. Note that there could be 0 to 5
correct answers. If none of the answer is correct, answer “none”. If you do not wish to answer
a question, leave it blank. All 10 answers must be written on the first page of your answer
book, and the answer to question 1 must be in the first line, the answer to question 2 must
be in the second line, and so on. If you fail to follow these rules then your answers will be
tgnored.

1. (3 points) Let f(n) be the number of additions in the following algorithm.

fori=1tondo
forj=1toido
fork=1tojdo
CHilk = A + BEIGIK;
end for
end for
end for

L. f(r) = O(rn*y/n)
2. f(n) =0O{n%logn)
3. J(n) = O(n)
4. f(n) = O(n®logn)
5. f(n) = O(n1%)
2. (3 points) Given two sorted list A and B (in increasing key order), the following recursive algorithm
merges A and B into 2 sorted list C (also in increasing key order).
e If either A or B is empty then the result is the other list.

o If both A or B are not empty, we compare the keys of the first nodes of A and B, and select the
smaller one (denoted as s), and remove it from the list. Then we recursively merge the remaining
parts of A and B into a new sorted list C', then we concatenate s with ¢ into the final sorted list
C.

Let f(n,m) be the minimum number of comparisons of this algorithm, where n and m are the numbers
of nodes in A and B respectively. f(n,m) is?

(n)

Qm)

Qn +m)

. 2(mn)

. mn(logm + logn))

S

3. (3 points) We now use the merge algorithm in the previous question to sort a set of keys. We first make
each key a list of a single node. Then we merge the first and the second lists into a sorted list of length
two, the third and the fourth lists into a sorted list of length two, and so on. If we start with n keys now
we have roughly n/2 sorted list of length two now. We then merge these lists of length two into roughly
n/4 sorted list of length four, and so on. Finally we will have a sorted list of length n. Let f(n) denote
the mazimum possible total number of comparisons of this algorithm, then f(n) is? Note that all the
answers are in little-o notation.

ARG

AR
#8

&

X

407 A EMAR 100 5 FHLIH AR
FH WAL o

Ak 407
z# 2 R

of{n)

. o{ny/n)

. o(nlogmn)

. of{n(logn)?}
. o{n?)

I O T

4. (3 points) A binary minimum heap is a binary tree in which every level is completely full, except the
last level, which is filled from the left to right. Here the {evel of a node is its distance to the root, so the
root has level 0 and the children of the root will have level 1, and so on. Also the key of a parent is less
than those of its children. For ease of discussion we assume that all keys in the heap are distinct. Now
which of the following descriptions about a binary minimum heap of 10 nodes (see the figure below) are
correct?

The second smallest key is always in level 1.
The largest key is always in a leaf, i.e., a node without any children.

. The second largest key is always in a leaf.

S S

. Let n be the number of nodes and we consider the case of arbitrary n, then the height of the tree
is B(logn).

5. Let n be the number of nodes and we consider the case of arbitrary n, then we can find the third
smallest key of the heap by O(1) key comparisons.

5. (3 points) We will follow the notations from the previous question. We can build a heap from an array
of n keys by the following algorithin. A heapify operation for a binary minimum heap combines two
heaps and a root into a new heap. For ease of discussion we assume that the array is indexed from 1
to n, and the left/right child of a node with array index i have array indices 2¢ and 2 + 1 respectively.
‘We first set each key of the second half of the array (indexed from n/2 to n) as n/2 heaps, each has one
node. Then we combine two of them and their parent into a heap of three nodes, and so on. If the root
is smaller than the roots of both subtrees then we stop. Otherwise we exchange the root with the smaller
root From the subtrees, and repeatedly heapify the subtree where the root has just been replaced. Next
we heapify the key at n/2 — 1 and all the way back to the root (at index 1). The final result will be a
binary minimum heap of = nodes.

1. The minimum number of key comparisons is ©(n).

2. The maximum number of key cornparisons is ©(n).

3. Since each heapify on a key may compare it with all the keys down to a leaf, its number of
comparisons is no more than the height of the heap, which is G(logn). Also we have O{n) keys to
heapify, so the total number of key comparisons is O(nlogn).

4. The number of key comparisons is in the same order as the sum of (original, before heapified) levels
(as defined in the previous question, the distance to the root) of all keys.

HRR

407 R EMAS 100 5 FHLE 4 RBA
EHAAIRL 2D

6 %

E : A0T
LS U |

5. The number of key comparisons is mezimized if and only if the largest n/2 keys are in the first half
of the array and in decreasing order.

6. (3 points) A rendomized quick sort works as follows. For ease of discussion we assume that the sequence
we want to sort, K = (ky,...,ks), is & permutation of 1 to n. We randomly and uniformly pick a key
k from K. Then we partition K into two subsets — K; that has keys less than k& and K3 that has keys
greater than k. Then we recursively sort K; and K, and combine the results with &k to get the sorted
sequence.

1. The number of key comparisons will always be maximized when the keys in K are already sorted.

2. Let |K;| and K| be the number of keys in K; and K, respectively. The expected value of
max({Kul, [K) s 2n.

3. The algorithm will compare two keys &; and k; at most once, so the number of key comparisons is
O{nl).
4. The probability that the algorithm will compare k; and k; (R>i>j> 1) is

2
TS
5. Let P = {(i,7)|1 <1,7 < n,1# j}. The expected total number of key comparisons is Z(i,j)EP ﬁ‘-—_};zlﬁ
7. (3 points) We can use a linked list to implement a stack. We assume that we use structure Node with
two members to represent a node of the linked list. The member data stores the data, and the member
next points to the next node in the linked list. Also we use & variable head to point to the first node of
the linked list. head is initialized to NULL.

1. Pushing the value of a variable 7 into the stack can be implemented as follows.

nevHBead = malloc(sizeof (Nods));
newHead->data = i}

newHead ->next = head;

head = newHead;

2. Popping the top of the stack into a variable ¢ can be implemented as follows.

free(head);
i = head->data;
head = head->next;

3. To test if the stack is empty we can check if the head is a NULL pointer.

4. We can improve the push/pop efficiency of this stack by adding another pointer tail that points
to the end of the linked list, so we can access the last node in the list in O(1) time.

5. We can improve the push/pop efficiency of this stack by adding another pointer member into every
node, so it becomes a double linked list. That is, we can traverse in both directions in this linked
list.

8. (3 points) A randemized linked list sorting algorithm works as follows. We want to build a linked list
in which the keys are in increasing order. That is, every node has a smaller key than its successor in
the list. For ease of discussion we assume that the keys are distinct integers from 1 to n. The algorithm
randomiy picks a key from the remaining keys, and inserts it into the list. This process repeats until all
keys are inserted. The inserted key k will skip those at the beginning of the list that are smaller than
it, and will stop at the first key p that are greater than it. We then insert the key k before p. To ensure
that all keys will stop we assume that initially the list has only one key, n + 1. After we insert all keys
we will have a sorted linked list from 1 to n 4+ 1.

1. Every inserted key will stop exactly once.
2. The smallest key 1 will not skip any keys.
3. The largest key n will always skip n — 1 keys.

ARG

AR
8

L3

407

B EMAR 100 $5RALIN LA RS

KR guR Kk (D) i

1

S . 407

% b R2% 4 R

0.

10.

4. The expected number of keys that the key ¢ will skip is £2(3).

5. The key i will skip j if and only if £ > 7 and 7 is inserted after j is inserted, so the expected value
of the total number of key comparisons is ©(n?).

(3 points) A binary search tree is a tree where every node has at most fwo children. For ease of discussion
we assume that every node has a distinet key. In addition, all keys in the left subtree are smaller than
the key of root, and all keys in the right subtree are larger than the key of the root. A tree node is a leaf
if it does not have any children. The height of the tree is the length of the longest path from the root to
a leaf. The successor of a node x is the node right after « in increasing order, and the predecessor of a
node z is the node right before = in increasing order.

1. We can locate the smallest key in a binary search tree in O(h) time in the worst case, where k is
the height of the tree. :
9. The height of a binary search tree of n nodes is O(logn).

3. We can locate the largest key in a binary search tree in O(log n) time in the worst case, where n is
the number of the nodes in the tree.

4. Assume that a node z has two children. We can remove z while still maintaining the sorted order
by locating its successor y, connecting y’s parent directly to the only child of y (if there is one,
otherwise make it mull), which effectively removes the node y from the free, and replacing the key
of z with that of y.

5. Assume that a node z has two children. We can remove z while still maintaining the sorted order
by locating its predecessor y, connecting y’s parent directly to the only child of y (if there is one,
otherwise make it null), which effectively removes the node y from the tree, and replacing the key
of z with that of y.

(3 points) A red-black tree is a binary tree where every node has a color (red or black), and has the
following properties.

1. The root is black.

2. All paths from the root to a leaf have the same number of black nodes.

3. Every red node must have two black children.

For ease of discussion we assume that all null pointers (a special pointer to “nothing”) point to a special
black node. As a result all counting of the second property ends at this special node.

1. If we do not guarantee the first property, but still guarantee the second and the third properties,
we will not be able to guarantee that the height of the tree is O(logn).
2. K is possible that there are no red nodes in a red-black tree of 100000 nodes.

3. We insert a key k into a non-empty red-black tree just like into an ordinary binary search tree as
a leaf, attach to it two null pointers to the special black node, and then immediately stop without
any adjustment. If we color k& red, we may violate the second property above.

4. Consider the scenario above. If we color & red, we may violate the third property above.

5. Consider the scenario above. If we color k black, we will violate the second property above.

Please Turn Over (there are more questions on the next pages).

407

m &

=3 a0

ﬁiﬁ!‘é‘iﬁﬁﬁ ¥k

B EMAS 100 B2FHLIE AL RN

AL 407

L Rz¥ R

11.

12.

13.

14.

Answer the following questions in details.

(5 points) Given an array of n integers A = (a1,@2,...,an) (n > 0), you are asked to find the maximum
and minimum elements with minimum comparisons. A simple solution is to iteratively compare each
element with current max and min. It takes 2n comparisons in total.

() {3 points) Devise an algorithm that requires less than 1.6Tn comparisons.
(b) (2 peints) How many comparisons does your algorithm take? Show your derivation.

{15 points) There are n stations along a coastal railway (n > 0). You're planning to select some of them
to open cafes. Three arrays S, L and R have been given, including

* S =(s1,82,...,5n): the list of the stations from s; (first) to s, (last).

o L={(l),ls,..,1,): the locations of the stations, where I; is the distance of s; from the first station
s1. So Iy =0 and [, is the length of the railway. I) <l < ... < {,.

o R=(ry,rs,...,m): the revenues of the cafes, where r; (> 0) is the revenue for opening a cafe in ;.

The only one constraint in your plan is that the distence of any pair of your selected stations should be
longer than a given threshold T'. If s; and s; (i #) are selected, the total revenue would be {; + ;.
Different selection leads to different total revenue. Given S, L, R and T, your goal is to pick up a
subset of the stations to maximize the total revenue under the constraint. Suppose that f{n) returns
the maximum total revenue for the cafes you select from the first n stations. Please answer the following
questions. No code is required {code will not be graded).

{a) (9 points) Give an O(n?) solution by defining a recurrence formula for f(n). Clearly explain the
meaning of your formula and why it can be computed in O(n?) time.

(b) (6 points) Consider the special case that the distance difference between two consecutive stations
is 1, i.e., liz1 — ;i =1 (1 €4 € n—-1). Give an Ofn) solution by defining a recurrence formula for
f(n). Clearly explain the mearing of your formula and why it can be computed in O(n} time.

(15 points} A disjoint-set data structure supports two operations. One is UNION(z,y), which merges
the two roots of the trees containing z and y. The other is FIND(z), which returns the root of the tree
containing z. Union-by-height is a union heuristic, which keeps track of the heights of the trees to attach
the shorter tree to the root of the taller tree.

(a) (9 points) Given an undirected graph G = (V,E), where V = {v),..,un} (m > 0) and E =
{e1,..,en} (n > 0), devise an algorithm to check if the graph G is a tree or not by using
UNTON({v;,v;) with union-by-height and FIND(v,) with no path compression, where vy, v; and
v € V. Clearly describe your solution and znalyze the time complexity of your algorithm in the
worst case. No code is required (code will not be graded).

(b) {6 points) The union-by-height heuristic prevents the height of a tree from growing linearly. Consider
another heuristic, called union-by-descendant, which always attaches the free with fewer descen-
dants to the root of the tree with more descendants. Suppose that path comnpression is not applied.
Which of the two heuristics is asymptotically better? Why?

{20 points) A tree T is assumed to be simple, undirected, and with positive edge-weights. Let dp(u,v)
denote the distance between u and » on T'. For a vertex v, the eccentricify of v is the maximum of the
distance to any vertex in the tree, i.e., max,ey {dr{v,u)}. The diameter of a tree is the maximum
of the eccentricity of any vertex in the tree. (The term “diameter” is overloaded. It is defined as the
maximum eccentricity and also as the path of length equal to the maximum eccentricity.}) The radius of
a tree is the minimum eccentricity among all vertices in the tree, and a center of a tree is a vertex with
eccentricity equal to the radius.

(a) (5 points) Prove or disprove that there exists a tree with three different diameters and two centers.
(b) (5 points) Prove or disprove that there exists a tree with three centers.

AR &

AR
#8

#

%

407

FH&RRR A=)
1

B EMAS 100 $5RALHR LS RRA

ME 407

£ b 52% 4 ®

{c) {10 points} Prove or disprove that any center of a given tree 7' must lie in the diameter of T

15. (15 points) A Single Nucleotide Polymorphism (SNP, pronounced snip) is a single nucleotide variation

in the genome that recurs in a significant proportion of the population of a species. The patterns of
Linkage Disequilibrium (LD) observed in the human population reveal a block-like structure. LD refers
to the association that particular alleles at nearby sites are more likely to occur together than would be
predicted by chance. The entire chromosome can be partitioned into high LD regions interspersed by
low LD regions. The high LD regions are usually called “haplotype blocks,” and the low LD ones are
referred to as “recombination hotspots.” Since there is little or no recombination within a haplotype
block, these SNPs are highly correlated. Consequently, a small subset of SNPs, called tag SNPs or
haplotype tagging SNPs, is sufficient to categorize the haplotype patterns of the block. It has been
shown that we can recast the tag SNP selection problem as Problem W, which is,“Given a universal
set U = {u1,%2,..,Un} and & family F = {F, Fs, ..., F, } of subsets of I, find a minimum-size subset, &
of F, such that every element of 2/ belongs to at least one subset in C.”

() (5 points) Prove or disprove that a greedy approach always delivers an optimal solution for Problem

(b) (10 points) Prove or disprove that Problem W is NP-complete.

R B

