249 題號:

節次:

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 電子學(A)

題號:249

共1頁之第1頁

- 1. (70%) For the following circuit, please
- (a) (10%) identify the non-inverting input node (V_1 or V_2),
- (b) (10%) find V_{BN1} and V_{BP1} such that I_{DS3} =200uA and I_{DS4} = I_{DS5} =250uA,
- (c) (10%) find the static power consumption,
- (d) (10%) find the input common mode range of the amplifier (ICMR+ and ICMR-),
- (e) (10%) find $V_{\it BP2}$ and $V_{\it BN2}$ such that the output voltage range can be maximized,
- (f) (10%) find the differential-mode gain ($A_{vd} = |v_o/(v_1-v_2)|$), and
- (g) (10%) plot the Bode plot (both gain and phase).

 V_{DD} =+5V, V_{SS} =-5V, $\mu_n C_{ox}$ =100 μ A/V², $\mu_p C_{ox}$ =50 μ A/V², V_{tn} = - V_{tp} =0.5V, and λ =0.05. Please assume all transistors are biased correctly in the saturation region and all have ratios of 16/1.]

- 2. (30%) An amplifier has a low-frequency gain of 80 dB and three poles at 1 kHz, 1 MHz, and 100 MHz, respectively.
- (a) (10%) Please plot the Bode plot of the amplifier (both gain and phase),
- (b) (10%) find the phase margin of the open-loop amplifier, and
- (c) (10%) find β such that the amplifier has a phase margin of 45 degrees when configured as a closed-loop amplifier.

試題隨卷繳回